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ABSTRACT

.The-purpose of this investigation-was to identify the vertical

variations in atmospheric light attenuation under ambient conditions

and to provide a method through which aerial photographs of earth

features might be corrected to yield quantitative information about

the actual features.

A theoretical equation has been developed based on the Bouguer-

Lambert extinction law and basic photographiC theory. This provided

a relationship between the actual density of the photographic negative

of an object (D ), the density (D) of the same object at a given

altitude (X), and the coefficient 'of extinction of light (b). This

equation states that

D D DB

.434D .434y 7B -
In le 4347 - e .43470 . -bX,

where 7 D' 7 B, and 7 are determined from the measurable Hurter and

Driffield characteristic curve of the photographic material. Measure-

ments were made of the initial density produced by the energy

reflected from control targets on the ground and the density produced

by the energy received at flight altitudes through the use of

photography. Measurements of the loss of energy at different

altitudes due to light scattering in the vertical were made by an

integrating nephelometer. These independent measurements were

compared through the theoretical equation developed. The theoreti-

cal equation has been found to hold for the altitudes studied

(altitudes up to 9000 feet above the ground) within the experimental

accuracy of the experiments performed.

iii
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The overall research effort has provided the following important

information.

1. It has provided a method to determine the accumulative

bX between the ground and an altitude,.X, based on

ground density data and aerial density data. As a

result the average b can be determined.

2. For remote sensing of the environment, it has provided

a method through which aerial photographs of earth

features can be corrected for the attenuation of light

due to an aerosol layer between the ground and the

altitude specified, provided the coefficient of extinction

of the layer is known.
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CHAPTER I

INTRODUCTION

NASA has recognized the tremendous potential of remote sensing

as a technique to survey the earth's resources. Their interest is

demonstrated by the unmanned Earth Technological Satellite Programs

(ERTS-A and ERTS-B) of 1972 and 1973, and the manned SKYLAB-A

orbiting EREP workshop program scheduled for 1973. Although much

"spectral signature" work has been done to identify optimum spectral

bands for delineating special surfacial features, much more work is

Sstill needed to describe the effect.(s) of atmospheric aerosols on

scattering and attenuating the light reflected from these features.

Work has been done- in the past in describing the effects of aerosols

on the reflected light from objects in the horizontal direction under

ambient and controlled conditions. The general objective of this

report was to identify the vertical variations in atmospheric-light

attenuation under.ambient conditions and toprovide.a method through

which.aerial photographs of earth features might be corrected to yield

quantitative information about the actual features.

A theoretical equation has-been developed based on the Bouguer-

Lambert extinction- law and basic photographie-theory. .This provided

a relationship between theactual density of the photographic

negative of an, object (Do), the density (D) of the-same object-at

a given altitude (K), and the coefficient of extinctionof light ( ~.

This equation states that

D -DE
.4347D .4347B Do

In [e - e -. 4347B - = -bX,
.434y
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where D' 7B' and y ,are determined from the measurable Hurter and

Driffield characteristic curve of the photographic material. Measure-

ments were made of the initial density produced by the energy reflected

from control targets on the ground and the density produced by the

energy received at flight altitudes through the use of photography.

Measurements of the loss of energy at different altitudes due to

light scattering in the vertical were made by an integrating nephelo-

meter. These independent measurements were compared through- the

theoretical equation developed. The theoretical equation has been

found to hold for the. altitudes studied (altitudes up to 9000 feet

above the ground) within the experimental accuracy of the experiments

performed.

The work described herein was performed over an eighteen-month
period beginning July 1, 1971, and ending December 31, 1972. The

first fifteen months were used to obtain data.and analyze preliminary

data. Final data analysis and the study report were completed during

the last four months. Geographical areas of study were (A) artificial

targets on The University of Tennessee at Knoxville campus,. (B) ap-

propriate natural targets in close proximity of Knoxville, and (C) an

oil tank farm in Knoxville,. Tennessee.

The overall research effort has provided the following important

information:

1. It has provided a method to determine the accumulative

bX between the ground and an.altitude, X, based on ground

density data and aer.al density data. As a result the

average b can be dethrmined.

2. For remote sensingof the environment, it has provided

a method through which.aerial photographs of earth

features can be corrected for the attenuation of light
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due to, an.aerosol layer between the ground and the altitude

specified, provided the coefficient of extinction of the

layer is known.



CHAPTER II

LITERATURE REVIEW

I. THEORY OF CONTRAST

Introduction

The quality of hotography and photometry, namely, the ability

to distinquish between one object and a second object of different

intensities; is greatly .affected by the turbidity of the atmosphere.

One of the-more significant effects is the reduction in contrast

between an object.and its background. The contrast ratio is defined

as the radiance or luminance of an object compared to the radiance

of its background. Since any function of the contrast ratio.also

represents a form of contrast, there are an unlimited number of

ways to represent the contrast between two objects. Most of the

studies involving the theory of contrast have been directed toward

the attenuation of light in the horizontal direction, although some

work has been done in the vertical.2'3

Koskmeider's Law

The basic concepts of contrast were developed by Koshmeider
4

and his associates. These concepts were based on the development

and testing of the equation which became known as Koshmeider's
4

law,

-bX -bX
B = B e + B( - ) (1-1)

where B is the inherent brightness of.an object (brightness at zero
,o

range), Bx is the.apparent brightness at range X, BH is the apparent

brightness of the background, e is the exponential base, and b is

4
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the. attenuation coefficient. Defining the basic relations of

inherent and apparent contrast, respectively,

C = (Bo- BH)/BHo o H H

and

C = (B -B H )/B .x x HxHx

If the assumption is made that the background brightness is not a

function of the distance (BH = B ), then from Koshmeider's law it

is seen that

-bX
C = :C e
x '0

This is the form of the contrast theory that is most often used

in experiments involving horizontal attenuation of light, since the

background is generally chosen to be the horizon.

Contrast by Photographic and Photoelectric Photometry

A comparison was made of the atmospherid attenuation of the

contrast as defined above by photographic and photoelectric photometry
4,5

in the visible light range.

The procedure used .... consisted of making brightness
contrast measurements by means of telephotometers for each

filter.... . . In-each case the horizon brightness along a

particular direction was chosen as the background bright-

ness for the objects being photometered. In the case of

the photographic photometry, the usual H and D curves were

prepared for the gray scale . . . and brightnesses of the

test objects and their sky backgrounds were determined from

densitometric measurements using.a photoelectric densitometer.

By means of the brightness data obtained using the two types of

photometers, the-apparent contrast of each of the objects was

calculated. A graph of the loge of the-percent apparent contraste

versus the range for each filter was :plotted. It was found that

the photoelectric and photographic measurements of the attenuation

of brightness.contrast were substantially the same.



Smoke Plumes Studied by Contrast Theory

Conner,6 in a study of the transmission of light through smoke

plumes,.defined the inherent and apparent contrast between two

targets, respectively;

Cic =(B - B2)/B (II-2)

and

Cac = (B 1  - B '2)/B' 1 . (11-3)

The quantity BI is the inherent brightness of the first target,

B is the inherent brightness of the second target, and the prime
.2
(') signifies the apparent brightness of each target. The apparent

brightness can be written as

B' = B + BT (II-4)
1 a 1

and

B' B + B T, (I-5)
2 a 2

where B is the sky-light not originating at the target, and T is
a

the transmission of the layer. The transmission, T, of a layer can

be expressed as the ratio of the brightness at distance X to the

brightness at zero distance:

-bX
T =e (I-6)

Thus, substituting T into the equation resulting from the subtraction

of Equation II-5 from.Equation II-4,

B'1 - B' 2
-bX = In [ B - B2 . (II-7)

From Equation 1-7, it is shown that the attenuation coefficient

can be theoretically measured in terms of the brightnesses of two
6

targets at zero range and range X. Conner has illustrated the

feasibility of using both photoelectric and photographic techniques

in evaluating the transmittance:of smoke plumes by measuring the
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luminance difference between a pair of contrasting targets through a

plume (B' - Bi')and clear of the plume (B -B). Conner has

suggested that there are many possible combinations of contrasting

targets that may be used. Those mentioned were: (1) blue sky--white

cloud,. (2) high ground--sky, (3) land--horizon, (4) plowed field--

wooded area, and (5) water--sandy beach. The advantage of photography

as found by Conner was that it provided a permanent and instantaneous

record of:an event, while photoelectric photometry had the advantage

of greater simplicity and faster data handling.
6

Conner has also, shown that for the situation where a target is

much brighter than the surrounding background (B>>B2 and B'>>B2 )

that one need only use a single target to determine the plume

transmittance. The transmittance then equals

B1 '
T B "

Vertical Attenuation.Studied 'by,Contrast

Mazurowski3 has:studied the attenuation of brightness contrast

(photographic contrast) using another variation of the concept of

contrast. The inherent contrast was defined.as

aim . (Bo - BH)/(B o  BH

Since

B = B +B T,
x a o

then the apparent contrast at an':altitude was found to be

.- 1
-1

Ca = Cim 1 + (Ba/T) (Bo) ] , (I-8)
m

where

B = (B + BH)/2."0 H)
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Rearranging Equation 1'-8

(Ba/T) = B9(Ci)Ca) - 1]. (-9)

From measurements of the luminance of a set of black, white, and

gray ground targets of area 48 square feet each,.Mazurowski was able

to calculate values of Ba/T which were then compared and related
3

to meteorological parameters such as

ground visibility, haze-layer heights, the number
and extent of temperature inversions in the atmosphere,
total precipitable moisture content, vertical extent of
humid layers, the polarization ratio of skylight and air
mass. The visibility, total precipitable moisture content,
and the polarization data yielded little relation with the
observed contrast reduction.

'However, it was found from this study that there was a correlation

between,air mass (and season of occurrence) with the contrast.
7

It has been shown by Veress that polluted air can be effectively

mapped through the application of the theory of contrast and color

aerial photography using a polaraid filter. Both quantitative and

qualitative infotmation was obtained about the nature and physical

dimensions:of the smoke plumes-studied. Topographical type maps

were constructed of the polluted air masses from vertical and

oblique photographs taken.

II. ATTENUATION COEFFICIENT

Bouguer-Lambert Law

The above experiments have made use of the concept of contrast

to determine the transmittance of a layer of air. The measurement

of the transmission of an. air layer has also been studiedby a more

direct-approach through the Bouguer-Lambert law:

B =-bX
T = Bo = e (11-6)
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The quantity B is the intensity or brightness of an object at

zero range, and B is the intensity of the object that has been

reduced by attenuation through range:X.' This approach involves the

actual measurement of the attenuation coefficient using specific

instruments.

Attenuation Coefficient

The attenuationcoefficient is composed of four terms:8

b=b +b +b + b
Rayleigh abs-gas abs-aerosol scat, (II-10)

where bRayleigh is the scattering of light by air molecules, bb

is the absorption coefficient of the gaseous components in the air

(such as NO2 , 03, H20), bs-erosol is the absorption coefficient

of aerosols or particulate matter such as soot, and b is the
scat

scattering coefficient due to.aerosols. Charlson has found that

for the wavelengths of .46 to .49 micrometers (4) that bRayleigh
-4 -1

is approximately 0.3 X 10 meters . Ozone and water (H20) have

also been found to be very weak absorbers 'in the visible light

region.8,9 Eltermann10 has measured the values of b'Rayleigh'

b scat, and b for various wavelengths for a typical atmosphere.
*scat ozone
Ozone absorption was found to be of the same order of magnitude as

b at .27p. However, at .32 L the ratio of b to b was
scat scat ozone

found to be approximately 1000. For greater wavelengths, bozone

was found to be even less. Thus, in the visible region, bozone

is negligible compared to b,scat

A similar comparison of bscat to b (b ca/bN) was made

by Charlson and Covert in which bscat was measured by an integrating

nephelometer and bNO2 was calculated from values of the NO2 concen-

tration and the' absorption coefficient of NO2 . Figure II-1 is a



graph of the extinction coefficient due to scattering at .554 versus

the NO2 concentration. Charlson and Covert have chosen the ratio of

bscat /bNO2 equal to six to be that point at which bNo2 is said to

significantly contribute to the overall attenuation of light. At a

bscat/bNO2 of twenty, scattering by aerosols is the dominating factor.

The shaded-in-area is the 90% confidence limit for the relation between

mass and meteorological range.

Values of the light extinction coefficient of NO2 have been
12

measured. Table II-1, Appendix, shows the value of the extinction

coefficient of NO2 for wavelengths in the visible range. It is seen

that for the shorter wavelengths (blue and green) that b has a moreNO2
significant effect than in the longer visible wavelengths. The

importance of bNo2 to the overall extinction coefficient for the

present work will be discussed in more detail in light of the results

obtained. In the absence of NO2, the attenuation of light in the

visible, Equation II-10, reduces to

b .= b +b . (II-11)Rayleigh scat

Noll and Pueschell3 have examined the particle size frequency

distribution of urban and maritime aerosols in order to determine

those particles which attenuate light in the visible range. It was

found that about 90% of the particles in.an aerosol were smaller than

.1L. However, their total contribution to light extinction was found

to be 5% at the most. The general absence of particles with radii

greater than 1.0p and the decrease in the scattering coefficient for

particles smaller than .1 lead to the conclusion that the size

range of optical importance was limited to .1l to 1.0'o.

Integrating Nephelometer

The evaluation of the visual quality of theair (extinction

of light by particle scattering) has been.aided by the.adaptation



of the Brewer and Beuttell integrating nephelometer to measure air

quality. The basic design of the nephelometer is discussed by

Ahlquist and Charlson.14 ,15  It has been successful in the following

15
areas:

1. studying the relationship between mass concentrations,
light scattering, and visibility,

2. monitoring light scattering coefficient as a function

of time at a stationary location,

3. measurement of the ratio of dispersion of smoke from

the burning of loggingwastes and forest aerosols,

4. mobile reconnaissance and the problems of spatial

variation in urban areas,

5. studies of aerosol background in air entering the

Pacific Northwest from uninhabited areas,

6. investigations of the wavelength dependence of the

light scattering coefficient.of atmospheric aerosol.

It has also been demonstrated that the integrating nephelometer can

be used by single engine aircraftl6 to measure particulate or mass

loading.

Veress7,17 has shown that the Charlson-Ahlquist type of

nephlometer can be used to evaluate smoke plumes by mounting the

instrument in an airplane and flying through the plume at different

distances downwind. A comparison between the values of the extinction

coefficient as measured by the nephlometer was made with the values

of the extinction coefficient determined by photogrammetry. Final

conclusions of this comparison were not available at the printing

of the article. It should be noted that the relation between density

and scattering coefficient as derived by Veress is not mathematically

correct in that

log (e e s
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-Likewise, some -of the -equations derived by Veress 17 in a similar

article -are not mathematically correct in that

log = loga -log b (log a)/log b.

The development of the relationship between photographic theory

and light extinction, as used by Veress, will be discussed later in

this report as it is quite similar and applies to the processes used

herein.

Effect of Relative 'Humidity on Attenuation Coefficient

In using instruments that measure the light scattering properties

of the atmosphere, Charlson and Ahlquist have suggested that a hygro-

meter be employed to measure the effect of humidity on the measured

scattering coefficient. Charlson and Ahlquistl8 found that a signi-

ficant increase in the scattering coefficient occurred above a

relative humidity of about 70% due to the increased growth in the

diameter of small particles. Pilat 19 has shown that this effect

occurs for the hydrated sodium sulfate. aerosol (Na2SO4-H20). In a
20

similar report, Lundgren and Cooper have studied laboratory and

ambient aerosols,,finding that, in some cases, effects of humidity

occurred at relative humidities as low as 50%, However, it was found

that if the relative humidity (R.H.) was lowered by drying the

sample to 30%1R. H. or below, then the sample could be compared to a

dry aerosol.

The nephelometer developed by Charlson has a heater in its air

stream which may or may not be used to lower the relative humidity to

below -40%, depending on the type of measurements that are desired.

This allows relative humidity effects to be minimized in this

instrument.



CHAPTER III

THEORETICAL CONSIDERATIONS

I. PHOTOGRAPHY AND LIGHT INTENSITY

Bouguer-Lambert Law

The basic equation used is the Bouguer-Lambert extinction law.

Assuming that-scattering prevails over absorption, this law reduces

to the well-known expression,

I = I exp(-bX), (III-1)
x o

where I is the initial intensity and I is the resultant intensity
o x

of radiation.after passing through a distance, X, containing particles

with an extinction coefficient, b. The scattering coefficient may

be constant or a function of X.

Relation between Exposure, Density, and Intensity

Photography may be used to measure the intensities of reflecting

targets. If unexposed film is exposed to an intensity, I, for a

given time, t,,:then the exposure is

E' = It. (111-2)

If the film-is exposed to a series of different intensities, then

the film response can be measured. Film exposure is related to the

density, D, by the-expression

D = 7 logE (III-3)

or

D = .4347 InE (111-4)

where gamma (7) is the characteristic of the film; thus,

D = .434 7 In It. (111-5)

13
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Luminance of a Colored Object

In relating the density, D, of an object on photographic film to

the actual intensity of the object, one must consider that the film is

exposed in.a camera through an objective. In Equation 111-5, the

quantity, I, must be replaced by the illuminance, If, in the focal

plane of the camera. This illuminance is expressed by the following

17
equation:

Bo Te

If = 4(f#)2 F , (111-6)

where Te is the transmission of the camera lens, (f#) is the relative

aperture setting, F is the filter factor, and B o is the luminance of

the object as received at the camera lens. Thus, B is a combination

of three components:

1. The first component is the reflected luminance from the

target that is not scattered or absorbed by an.aerosol

layer between the target and distance, X. This can be

written as IsRgTa , where Is is the incident illuminance

of the object, Rg is the reflectance of the object in the

direction of the camera, and Ta is the transmission of

the atmosphere.

2. The second component is the luminance produced by the

scattering of the sun's rays that penetrate the layer

below the camera. (This is termed sky-light.),

3. The third component is the luminance produced by the sky,

indirect sky-light. (This is termed diffuse light.)

The sky-light and diffuse light are expressed by the symbol, Ba,

the total atmospheric'illuminance. Figure III-1, Appendix, is an

illustration of how these three components contribute to the total

luminance, B0, for colored (reflecting) and black (absorbing)

targets. Therefore,
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B = I R T +B . (111-7)
,o s g a a

Substitution of this value of B and Equation 111-6 into Equation III-5
o

yields the photographic density of an object:

(Is Rg Ta + Ba) Te t
D = .434 7D In [ 4(#) 2 F , (III-8)

where Is and B are in foot-candles. Converting to the meter-candlea

system, the general equation for the photographic density of an

object becomes:

2.7 (Is Rg Ta + Ba) Te t
D = .434 7D In 1 2 F (III-9)

Luminance of a Black Object

If the object in question is a perfect black body (totally

absorbing) instead of:a colored (wavelength-dependent reflection)

object, then Rg is zero and Equation III-9 reduces to

2.7 Ba Te t

DB'= .434 In [ (f). F  ] , (III-10)

where DB is the density of the black body as seen by the photographic

film.

Relation between Density and Extinction Coefficient

Referring to Figure III-i, if the atmosphere is horizontally

uniform, meaning that the extinction coefficient, b, is constant in

the direction parallel to the earth's surface, then Ba has the same

value at a point above a colored target that it does above a black

target. This provides a very useful technique to correct the density

of an-object for-sky-light and diffuse light. Rearranging Equations

111-9 and III-10,
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D 2.7 (Is Rg Ta + Ba) Te t

.434 7D  (fn 2 (I-11)

and

Db 2.7 Ba Te t
B = In [ 2 ] . ((fI-12)

.434 7B (f#) F

Raising each equation to the exponential power of e, and subtracting

Equation III-12 from.Equation III-11, the resulting equation is that

D DB
.434 YD  .434 7B  2.7 (Is Rg Ta) Te t

e -e 2

(f#) F

or

D DB

.434 D - .434 7B 2.7 (Is Rg Ta) Te t
In [e - e ] = In [ f]

(f 2 F

(111-13)

Referring toEquation III-9, if the camera is at a distance such

that scattering and absorption are negligible compared to the re-

flected intensity, then Ta approaches unity corresponding to one

hundred percent transmittance of the object's reflected light. This

occurs as'X approaches zero. The quantity Ba also approaches zero

under these conditions. Thus, for a camera very close to an object,

Equation I-9 reduces to

2.7 (Is Rg) Te t
Do = .434 70 In 2 e  , (II-14)

(f#) F

where Do is the density of the object at zero distance. Subtracting

Equation 111-14 from Equation III-13,

D Dg
.434 7D .434 7B Do

In [e - e ] - = In Ta. (111-15)
.434 y0
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The transmission of a layer of air between zero distance and

distance X is defined as

I -bX
T = e
a io e . (IIl-1)

Substitution of this relation into Equation III-15 produces the final

equation:

D DB
.434 7D .434 7B  D

ln [e e ] 3 = -bX. (111-16).434 70

Equation 111-16 is the theoretical working equation since it includes

all the variables necessary to measure losses in intensity. By

proper consideration of the densities of black and colored objects

at various altitudes, this equation theoretically enables one to

compare a loss or change in the density of an object (an indirect

measure of the intensity) with variations in the atmospheric attenua-

tion produced by an aerosol.

The importance of Equation III-16 is two-fold:

1. It provides a method to determine the accumulative

bX between the ground and altitude,. X, based on ground

density data and aerial density data at the altitude in

question. As a result, the average, b, can be deter-

mined.

2. For remote sensing of the environment, it provides

a method through which aerial photographs of earth

features can be corrected for the attenuation of light

due to an.aerosol layer, provided the coefficient of

extinction of the layer is known.
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II. INTERPRETATION OF THE PHOTOGRAPHIC CONSTANT

The 7-Curve

Equation 111-16 is quite sensitive to the photographic constant,

7. As will be seen, 7 is not necessarily constant, thus it is

worthwhile to expound upon its meaning and interpretation. C. E.

Mees, in The Theory of the Photographic Process - Chapter XIX,2 0

has written a thorough explanation of the relation between density

and exposure, namely, /

D = 7 logE. (111-3)

The following discussion is taken primarily from that book. The most

generally used curve for determining 7 is the Hurter and Driffield

characteristic curve (H and D curve). The general form of this

curve for positive film can be seen in Figure 111-2, Appendix, in

which the various parts of the curve are labelled. The curve is

constructed by exposing a photographic material to a known amount

of radiation, developing the material, and then measuring the densi-

ties resulting from the various exposures. The results are expressed

graphically by plotting the measured density against the logarithm

of the exposure. For the straight line portion of this curve,

dD A D
7 = tan~ dD . (1II-17)d logE logE (111-17)

However, this value of 7 is only valid for density values ranging

between points.A and B in Figure 111-2.

Shape of the 7-Curve

The shape of the characteristic curve depends on the conditions

of development such as temperature, developing agent, and/ time of the
20

development. Figure III-3, Appendix, illustrates how the curve

is shifted by increases in the time of development. Once' the characteristic
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curve has been established, then the exposure produced by any object

can be determined provided the photographic material was developed

under identical conditions.

For the case in which the measured density falls above point

A or below point B in Figure 111-2, 7 is no longer constant, and

varies as the density is changed. For these cases, it is necessary

to take the instantaneous slope of the D-logE curve to determine 7.

This is indicated by Equation 111-17. Since it is no longer proper

to call y a constant, the measured 7 corresponding to the density, D,

is more properly labelled 7 D

For a negative which is exposed to a series of different amounts

of radiation, the characteristic curve is found in Figure 111-4,

Appendix.20 The methods and techniques used for the positive print

are equally applicable to the negative characteristic curve.

The Kodak Photographic Step Tablet

For simplicity in producing a characteristic curve, a semi-

transparent density wedge is made by most photographic companies which
21

consists of 21 densities running from densities of about .06 to 3.0.

Each step represents a density difference of about .15 or an actual

exposure of 1.414 (the square root of two). By making a contact

print of this photographic step tablet (Kodak Photographic.Step

Tablet No. 2) one can then obtain the characteristic curve of the

negative by plotting the predetermined 'original" densities of each

step in the tablet as published by the manufacturer on the ordinate

against the microdensitometer-measured densities on the abscissa.

In this manner, YD can be determined for each measured density. This

is illustrated in-Figure 111-5, Appendix.
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Kodak Paper Gray Scale

A paper gray scale is also manufactured by Kodak which,has

12 densities ranging from .06 to 1.74. This can be used instead

of a step tablet to determine yD . A direct photograph is taken of

this scale and the negative is analyzed to obtain the measured

densities. A graph of the measured densities versus the original

calibrated densities then allows one to obtain YD .

The Derivative of the D-LogE Curve

In using the D-LogE curve to determine 7D, it is possible to

obtain the derivative of the curve from which yD can be read directly

as a function of the measured density. This becomes especially

valuable if the-characteristic curve is not straight over a wide

range of densities. The curve illustrated in Figure 111-6, Appendix,

is the derivative of the 7-curve found in Figure 111-5.



CHAPTER IV

EXPERIMENTAL APPARATUS AND PROCEDURE

I. MOBILE (AERIAL) APPARATUS

Integrating Nephelometer

A vertical profile of the scattering coefficient, bscat, was

made using an MRI integrating nephelometer Model No. 1550 and

Recorder SystemNo. 2050. This was accomplished by mounting the

nephelometer and its recorder in an Aero Commander (Model 520,

Serial #6, 1952) airplane. Figure IV-I, Appendix, is a diagram

of the placement of the apparatus in the airplane. The scattering

coefficient was recorded continuously on a revolving strip chart

at a chart speed of one inch per minute. An event number was placed

on the strip chart as each event was recorded. The system was powered

by a portable battery system during some of the earlier experiments;

however, due to the bulkiness of the battery system, an inverter

was installed in the.airplane's electrical system to convert the 24

volt d.c. system into a 110 volt a.c. system.

An illustrative diagram of the integrating nephelometer is shown

23
in Figure IV-2, Appendix. The measurement of the scattering of

light is accomplished by a xenon flashlamp and a photomultiplier

tube. With each flash of the lamp, the photomultiplier tube detects

the light scattered from the particles in the sampling area. The

current pulse from the photomultiplier tube is fed to an integrating

circuit. At the same time, the current pulse from.a reference

phototube is fed into a similar circuit. The ratio of these two

signals is amplified and passed through an RC network whose time

21
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constant can be varied to regulate the averaging period of the

measurements. This output is then amplified to a 5 volt full-scale

level. The flashrate and averaging time are variable from 1/4-16

flashes per second and .1-200 seconds, respectively.

The MRI Instruction Manual--110A
2 3 suggests that for aircraft

monitoring that a flashrate of 16 flashes per second and a time

constant of .1 or 2 seconds be used. It was found that for the

experimental set-up used, a flashrate of 16 flashes per second and

a time constant of 2 seconds was suitable. For this time constant,

the background noise of the output was approximately + .05 bscat

while for the .1 second time constant, the background noise was

+ .15 b
scat

Calibration of the Nephelometer

An absolute calibration of the nephelometer was done before

each series of flights made. In cases where the nephelometer

remained mounted in the aircraft for several days between flights,

it was only necessary to perform a calibration check.

The calibration of the nephelometer is described in detail in

the MRI Instruction Manual--ll0A. Basically, this consisted of

calibrating two reference positions: the reference value of .23 X 10 -

meters-1 for b of pure air, and the value of 3.6 X 10
Rayleigh

meters for b of Freon 12. This was accomplished by purging
seat

the system and filling the sampling chamber of the nephelometer with

filtered air. This determined the clean air (background) reference

point. Freon 12 was then introduced into the system and the second

reference point was established. After checking these reference

points and resetting the corresponding background and gain controls,

theabsolute calibration was complete. A. reference calibration

check is provided which allows a quick calibration check at any

time during measurements.
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Scattering Coefficient Measurements

A vertical profile of the scattering coefficient was obtained

by measuring b at each altitude that was flown. The accumulative
seat

bX, the right-hand side of Equation 111-16, was determined by taking

the total area under the X versus b curve up to the altitude
seat

'where the density, D, of the left-hand side of Equation 111-16 was

measured. This process whereby the area under-the curve was obtained

is illustrated in Figure IV-3, where the accumulative bX at four

different altitudes (X1, X2 , X3 , and X4) is measured. The data from

each vertical profile were treated in this manner.

Temperature Measurements

Dry-bulb (Td) and wet-bulb (TW) temperatures were measured by

placing dry-bulb and wet-bulb thermometers in the air stream of the

intake to the nephelometer. These were placed after the heater in

the air stream so that the relative humidity of the sample could be

determined just before it entered the nephelometer chamber. The

thermometers were calibrated in degrees Fahrenheit ('F) with one

division per degree. The accuracy of any individual reading was

'+ .50F. Temperature readings, as well as the time, were recorded

for each event which was recorded on the nephelometer.

Photographic Equipment

For photographic purposes, three Hasselblad Model 500EL/70 mm

cameras were mounted in a 4-hole camera mount in the floor of the air-

plane. These were capable of taking 70 pictures in 65 seconds. Each

camera contained one roll of Kodak Plus-X Aerocon 8401 (Estar Base)

black and white film. The film is especially desirable for high-

speed aerial photography at medium and high altitudes. A single

synchronized electronic shutter release was used to insure that

all three camera shutters operated in unison. Due to the manufacturer's
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discontinuation of the production of the 8401 film, a similar film,

Kodak Plus-X Aerographic 2402 (Estar Base) was used on some of the

latter flights.

Each camera was equipped with a filter for selective sensitivity:

one witha Hasselblad 3XG-1.5 green filter, one with a Hasselblad

2XCB6-1.0 blue filter, and one with a Hasselblad 6XR-2.5 red filter.

In the latter flights, the blue filter was replaced by a Wratten

#47 filter to obtain a narrower selective band pass. The spectral

transmittance of each filter is shown in Figure IV-4, Appendix, for

wavelengths ranging from .4 4 to .71.

II. STATIONARY (GROUND) APPARATUS

Ground Targets

The objects photographed and analyzed in this investigation

were four 20 feet by 20 feet targets: red, green, blue, and black.

The red, green, and blue targets were purchased from Wright-Patterson

Air Force Base. These were made of canvas and painted with special

spectral reflective paint. See Figure IV-5, Appendix, for the

spectral reflectance of each target as a function of wavelength.

The black target was constructed of black felt, and backed with black

plastic to minimize any reflection from its surface.

Other Ground Equipment

Other ground equipment consisted of:

1. one model 720 Gamma Scientific photometer with mono-

chromator,

2. one Hasselblad Model 500EL/70 mm camera with inter-

changeable red, green, and blue filters identical to the

aerial filters,
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3. one Kodak Calibrated Paper Gray.Scale (Serial No.

906GS213) with reflection densities ranging from .00

to 1.74 in 12 incremental steps (See Figure IV-6,

Appendix),

4. one Kodak Step Tablet No. 2 (Serial No. 007ST471) with

calibrated densities ranging from .06 to 3.00 in 21

increments,

5. one Voltz sun-photometer for turbidity and sun

intensity measurements.

III. EXPERIMENTAL PROCEDURE

Aerial Procedure

Aerial data was taken over the 20 feet by 20 feet colored

targets at various altitudes beginning-at analtitude of approximately

500 feet above the ground level (AGL) or 1400 feet mean sea level

(MSL). The altitude was increased in 300-500 feet intervals with

each successive pass over the targets. See Figure IV-7 for a

diagram of the flight pattern. The typical time elapsed from one

pass to the next was approximately two minutes. A complete series

of flights consisted of making flights from as low as possible to

a point well above the haze layer. Twenty minutes to an hour was

required for a complete series of passes, depending on the haze

layer thickness and the prevailing weather conditions such as wind

speed and cloud build-up. The general time of day of the flights

was usually between 11:00 a.m. and 1:00 p.m. (EST). This time

was chosen because the intensity of the sun during this period

changes very little with sun angle. During earlier and later periods

of the day, there is a considerable change in the period of an hour's

time.
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Photographs were taken of the four large targets with the

Hasselblad cameras using the red, green, and blue filters at each

altitude. At altitudes lower than 1000 feet above ground, it was

impossible to press the shutter release at the instant that the

airplane was directly above the targets. Occasionally, the target

was missed at these low altitudes, and it was necessary to make a

second pass. Since it was not possible to be sure if the target was

in the frame, three flights were generally made at the lowest pass.

The camera mount, itself, had a set of bubble-leveling indicators

with adjustment levers to insure that the mount was always in the

same plane as the targets.

Photographs were also taken of selective earth resource features

such as forest-water interfaces, highway clover-leaf intersections,

and an oil tank farm while making the circular return to the four

target panels. Data were recorded above these in the same manner

as above the four targets, with the exception of ground data.

Analysis of these data was postponed until the completion of the

analysis of the four colored targets.

Ground Procedure

On the ground, photographs of the targets were taken with the

Hasselblad camera every four to ten minutes using the three filter

combinations. The frame number and time were recorded in order that

these might be compared to the aerial photographs taken at the same

time. The ground photographs were all taken at a height of six

feet directly above the targets. Care was taken to.avoid any shadows

on the targets.

The Kodak Calibrated Paper GrayScale was placed on the black

target and was photographed to determine 7. An analysis of the

ground data showed that there was no measurabledifference in the
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7-curve determined at three feet and the one determined at six feet.

Thus, on all flights, a photograph was taken at three feet rather

than at six feet to make the analysis of the negative easier. This

same procedure was carried out for the red, green, and blue filters,

respectively.

A photograph was lso taken of the Kodak Step Tablet No. 2

which was taped to a piece of ground glass over a white reflecting

panel. The ground glass\was used to insure a uniform lighting of

the step tablet. The negative of this photograph was analyzed to

determine 7. Both the Kodak scales produced the same 7 for each

density measured. Figure IV-8, Appendix, is a graph showing the

comparison between the curves for a ground experiment performed for

the specific purpose of comparing the two scales. The 7-curve for

the step tablet is shifted because it was backed by the ground glass;

however, the slope of each curve (7) is still the same. Thus, either

method will produce the desired 7-curve.

IV. FILM ANALYSIS

Film Processing and Mounting

The film taken on the ground and in the air was developed at

72*C for four minutes and fifty-five seconds. Two rolls were

developed at the same time. After the filmwas developed, the

negativeswere examined. The negatives of the aerial targets, the

paper gray scales, and the ground targets were then cut out of the

negatives, mounted on 4 inch by 5 inch index cards, and labelled.

Microdensitometer Analysis

An.automatic magnetic tape recording microdensitometer and

recorder, Tech/Ops Scandig Model 25.and Kennedy Model 3110 Digital

Tape Recorder, were used to determine the transmission densities of
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the targets on the film at each altitude. The densitometer uses an

electro-optical rotating drum to obtain pictorial information from a

film negative or transparency. The Scandig quantitatively measures

optical densities from 0-3D through 256 levels with a resolution of

.012D.24 The sampling lattice along the axis and along the circum-

ference of the drum is 25,50, and 100 microns.

The output of the microdensitometer is stored on eight channels

of magnetic tape asisuccessive binary numbers proportional to the

optical density of the point sampled. This is then fed into a

computer. The output is then printed on paper forming the image

of the sample but with a density scale ranging from 0-256. Figure

IV-9, Appendix, is a flow diagram for the processes involved in the

film.analysis. Figure IV-10, Appendix, is a photograph of the

computer print-out showing some of the symbols used. Each symbol

is representative of a density value. However, there are only 100

different symbols; each symbol represents a density range of 2.5 out

of 256. This density range is then converted.to the 0-3D range.

Therefore, the overall resolution of the density measurements using

this system is .03 out of 3, or 1%.

In analyzing the data and scanning large areas where spatial

resolution was not important, a 100 micron lattice was sufficient.

For flight altitudes of 4000-8000 feet it was necessary to use the

25 micron scanning lattice because of the decreasing size of the

targets. The densities of the targets and step wedges were determined

for each set of filters and placed in tabular form. Gamma (7) was

then determined for each of the filters for the data analyzed, as

previously described.



CHAPTER V

EXPERIMENTAL RESULTS

I. DESCRIPTION OF FLIGHTS

Flights Made

Ten flights were made throughout the duration of the research

effort. These were coded according to the date the flights were made:

1. August 11, 1971 Flight

2. August 19, 1971 Flight

3. October 12, 1971 Flight

4. October 26, 1971 Flight

5. October 28, 1971 Flight

6. June 30, 1972 Flight

7. July 12, 1972 Flight

8. July 20, 1972 Flight

9. July 24, 1972 Flight

10. November 6, 1972 Flight

Developmental Experiments.of :August 11 to October 26, 1971

The first four flights were primarily developmental flights which

eventually led to the experimental procedure described in Chapter IV.

These four flights provided useful information such as the profile

of the scattering coefficient and the relative humidity in the verti-

cal direction. However, the technique of employing a black (ab-

sorbing) target to distinguish between the targets reflected

energy and the energy received at the camera from target, diffuse-,

and sky-light was not used on these flights.

After these data were reviewed, it was determined that it was

not possible to relate the scattering coefficient to changes in

29
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densities above the targets without a more complex experimental

procedure. Figure V-1, Appendix, is a graph of the change in

density of the red, blue, and green targets for the August 10,

1971 flight. The photographs were taken with the Hasselblad red

filter previously described. Included in Figure V-1 is a plot of

the vertical profile of the scattering coefficient, b. A comparison

of this graph with similar graphs of the data for the other three

developmental flights did not provide-any new information.

Experiment-of October 28, 1971

This experiment was conducted in a similar manner to the

previous four flights, but with the inclusion of a new particle

counting instrument. The purpose of this flight was to compare the

scattering coefficient as measured by the nephelometer with the

particle count measured by a Bausch and Lomb particle counter

(Model No. 40-1A). The particle counter was owned, operated, and

calibrated by the Tennessee Valley Authority (TVA); it was flown

in a TVA helicopter over the targets in conjunction with the air-

plane passes in which the nephelometer was used. It was not

possible to convert the data from the two instruments to a common

base. Thus, only a relative comparison was possible. Figure V-2,

Appendix, is a graph of the vertical profiles of the scattering

coefficient and the particle count on relative scales. It is seen

that these two profiles are quite similar, indicating that the

nephelometer yields results comparable to those obtained by the

aerosol particle counter.

Flights of June 30 to November 6,1972

After having analyzed the first five flights, it was determined

that the target density data needed to be corrected for sky-light

and diffuse light before any comparison could be made between
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nephelometer-measured losses in intensity and photographically-

measured intensity. A black (non-reflecting) target was introduced

into the experimental procedure. The black target was included

after the theory was developed for the complete relationship

between density, altitude, and the scattering coefficient. The

theoretical relationship, expressed as the following (Equation

I1-16):

D DB

.4347 .4347
In [e - e B Do = -bX,

.43470

demonstrated the need for a black target to measure only sky-light and

diffuse light.

The flights of June 30, July 12, July 20, July 24, and November 6,

1972, were all made with black targets and followed the experimen-

tal procedure outlined in Chapter IV. Table V-, Appendix, shows

each of these flights, describes the filter combinations used, and

explains why certain data and filter combinations were not available

for some of the flights. There was a malfunction in the synchronized

shutter release in two of the cameras during three of these flights.

II. ANALYSIS OF THE FLIGHTS

Flights of June 30 to November 6, 1972

As a result of the experimental flights, five sets of data

were found to be complete enough to allow evaluation. See Table

V-1 for these flights and filter combinations. These data were

analyzed for the following information:

1. the accumulative bX at each altitude from the nephelo-

meter data (Figures V-3, V-4, and V-5, Appendix),

2. target densities at each altitude (Tables V-2, V-3,

and V-4, Appendix),
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3. relative humidity for each altitude (Figures V-3, V-4,

and V-5, Appendix),

4. 7-curyes for each flight (Figures V-6, V-7, V-8, Appendix),

5. 7 for each measured density (Figures V-9, V-'~- 0 V-l;iApp endix).

Assumption that 7B = 7D

Because of the form of the 7-curves (Figure V-6), it was found

that the 7B corresponding to the measured densities of the black

target did not give useful results. This was a result of the rapid

change in 7 with density in this part of the curve. Because of

this inability to use 7 B experimentally, the following assumption

was made:

Assumption--Assume that the 7 corresponding to the density

of the black target at a specific altitude, 7 B is identical

to the 7 corresponding to the density of the colored target

at the same altitude.

Applying this assumption to the theoretical equation, Equation

III-16 then becomes the following:

D DB
.4347D .434

In [e - e D - D_ = -bX. (V-l)
.43470

Application of Equation V-1 to the Experimental Data

Equation V-1 was applied to all the information from the five

complete sets of data (Table V-l). Calculations were made of the

photographically-determined values of bX. These are included in

Tables V-2, V-3, and V-4. along with the bX values determined by

the nephelometer.

Dependence of IZbX on I/L D

Figure V-12 isia plot of the absolute value of the difference

between the photographically-determined bX-and the nephelometer-
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determined bX (InbXl) against I, D 1. From this graph it is seen

clearly that for IJy/&DI > 1.0, there is a significant increase

in LbX. See back-up Figures V-9, V-10, and V-1l.

This can be explained by realizing that the measured density

versus calibrated density curve (Figures V-6, V-7, and V-8) from

which 7 was determined, was constructed from 12 data points. For

densities which did not fall at these values, it was necessary to

interpolate by constructing a smooth curve through the points. When

y is changing rapidly (the second derivative of the measured den-

sity versus the calibrated density is unequal to zero), then it

becomes increasingly more difficult to determine the instantaneous

7 with any accuracy. The result is that for values of Iz/m DI

> 1.0, the value of bX can not be determined.

Limitations: on the Experiment as a Result of Lv/DI

Figure V-12 shows that for values of I6Y/DI > 1.0, th accuracy

of measurement of bX by photographic means decreases rapidly. For

VI/ :DZ , 1.0, bX can be determined within a value of bX + .05.

Furthermore, it is seen in this figure that the accuracy does not

improve for I7/DI < :1.0. Figure V-16, Appendix, is a grabtjof

all the data taken for which IY/Di2 1.-0. A least square analysis

was run on this data and is illustrated in the figure.

It is seen from Table V-2, V-3, and V-4, that the limitation of

!L~Wy1DI 1.0 has eliminated all of the filter-target combinations

except for red filter-red target and blue-filter-blue target. This

should not be interpreted to mean that the other filter combinations

will not produce significant results. For the remaining filter

combinations there is the possibility of developing the film for a

longer or shorter time period to try to lower the value of I£/DI

below 1.0. From Figure II-3, Appendix, it can be seen that the

7-curve can be changed by varying the time of development. Since
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the accuracy of the-experiment is dependent on the rate of change of

7 with the density, it should be possible to produce a negative with

Im 7DI < 1.0 for most filter combinations. The regions inwhich

7/<DI 1.0 (the useable regions) are labelled by points C and D

in Figures V-6, V-7, and V-8.

Relative Humidity and NO2 Effects

A vertical profile of the relative humidity was determined

for each flight asdescribed in ChapterIV. These proviles are

included in Figures V-3, V-4, and V-5, Appendix. The relative humi-

dity was found to be less than 65% on all flights made; thus it

can be concluded that its effect on the nephelometer-measured

values of bX was negligible.

The effect of absorption by NO2 on the.attenuation coefficient

was estimated to be at most 5-10% based on typical values of the NO2

concentration in the Knoxville,.Tennessee area.

Summary

Although much work is still needed in this researcharea, it

has been shown by this effort that it is possible to'measure'the

accumulative bX by the photographic process using the developed

theoretical equation, Equation 111-16. Necessary conditions to

obtain meaningful measurements are that

1. 7B 2 D

2, IL D M 1.0.

With these two conditions, bX has been measured with an accuracy

of bX + .05.' For the.average aerosol concentrations in the Knaxville,
3 25 -4 -1

Tennessee area of 68 pg/m particulate matter (2.3X 10 m =

bscat), this represents an error of:approximately ± 22% for an.air
scer of 000 meters. owever n days in which high particulateat

layer of 1000 meters.. However, on days in which high particulate
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-4 -1
air pollution levels exist (4-5 X 10 m = b ), the error in

scat

this method is reduced to + 10%.

This research effort has demonstrated that it is possible to

determine the-amount of particulatd air pollution present between

a target and the altitude of an.aerial photograph by application of

a theoretically developed equation. The required parameters to

solve the theoretical equation are as follows:

1. -'reflected film density at ground,

2. reflected film density at flight altitude,

3.* density of a black target as seen at flight altitude.



CHAPTER VI

FUTURE RESEARCH

There are several important areas in which this research effort

may be extended. Additional research is needed to evaluate the

possibilities of using any number of:different filter-target color

combinations to allow a more versatile application of the pro-

cedure. Ground experiments can be done to see if it is possible

to produce y-curves for which Isj/2DI < 1.0 for many different

filter combinations.

This research effort can also be-extended into the.area of remote

sensing of the environment by earth satellites. By having ground-

based knowledge-of how the density of appropriate earth features

change with incoming intensity of the sun's radiation, it should

be possible to-relate the change in this ground-based density, as

seen by.a satellite, to changes in average scattering coefficient,

b,. of the atmosphere, Because of the large extent of ground cover-

age by satellite sensing, this provides a means for large-scale

(state and regional) mapping of particulate air pollution without

the use of anextensive ground-based monitoring system. In like

manner, earth features which change with the seasons of the year

such as vegetation can be evaluated more accurately by remote

sensing. By first evaluating a region using seasonally-unchanging

earth features and mapping the particulate air pollution, it would

then be possible to evaluate seasonally-changing features-for

changes in density produced by the overlying aerosol. This would

allow correction of the day to day variations of the density of-an

earth feature-as seen by a satellite and allow a more accurate

evaluation of the environment by remote sensing techniques.

36
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This research effort might also'beextended into remote

sensing in the infrared provided an equivalent "black" target

could be found in this spectral region.
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Table II-I. Values of the Light Extinction
Coefficient of NO2.

Wavelength, *A b (PPM-IMile ) b (PPM-iMile-1)

4000 2.60 1.64

4500 2.07 1.31

5000 1.05 0.66

5500 0.47 0.30

6000 0.18 0.12

6500 .062 0.039

7000 .026 0.016

Sources: Computed from the Summary in "Photochemistry of Air
Pollution," Philip A. Leighton, Academic Press,

1961.

The Oxides of Nitrogen in Air Pollution. Department

of Public Health, State of California, Berkeley,
California, January, 1966, pp. 53-63.



Table V-I. Type of Data Taken on Each Flight.

Filters Used Aerial Data Ground Data Data
on Targets Available Available Complete Explanation

Red filter X X X A second blue filter

June 30, 1972 Green filter X X X for the ground data
was not available

Blue filter X

Red filter X X X No 7-curve for the

July 12, 1972 Green filter X green filter
A second blue filter

Blue filter X for the ground data

was not available

Red filter X Malfunction in two
aerial cameras

July 20, 1972 Green filter X A second blue filte

Blue filter X for the ground data
was not available

Red filter Malfunction in the

July 24, 1972 Green filter X camera for the red
filter and the

Blue filter X ground data

Red filter X X X

November 6, 1972 Green filter X No 7-curve for the
green filter

Blue filter X X X
0¢



Table V-2. Data for the June 30, 1972 Flight.

Black Calcu-

Filter Target Altitude Density Target 7 7D lated MeasureX bX
Density bX bX

Red Red 0 1.499 - 1.230 - - - - .78

Red Red 105 1.342 .164 - 1.105 .099 .0189 .0801 .78
Red Red 336 1.386 .257 - 1.140 .114 .0592 .0548 .78
Red Red 458 1.289 .323 - 1.067 .157 .0805 .0765 .78
Red Red 763 1.208 .323 - .997 .155 .1350 .0200 .78
Red Red 916 1.203 .396 - .994 .187 .1630 .0240 .78
Red Green 0 .633 - .395 - - - - 1.30
Red Green 105 .515 .164 - .36 .507 .0189 .488 1.30
Red Green 336 .552 .257 - .36 .323 .0592 .264 1.30
Red Green 458 .558 .323 - .36 .372 .0805 .292 1.30
Red Green 916 .591 .396 - .36 .249 .1630 .086 1.30
Red Blue 0 .566 - .36 - - - - 1.30
Red Blue 916 .528 .396 - .36 .805 .1630 .642 1.30

Green Green 0 1.016 - .782 - - - - 1.34
Green Green 105 1.073 .247 - .775 -.102 .0189 -.083 1.34
Green Green 336 1.296 .616 - .995 .225 .0592 .166 1.20
Green Green 458 1.034 .456 - .798 .217 .0805 .137 1.34
Green Green 611 1.069 .541 - .840 .330 .1080 .222 1.34
Green Green 763 ..993 .503 - .776 .311 .1350 .176 1.35
Green Green 916 1.000 .536 - .772 .297 .1630 .135 1.34
Green Red 0 .903 - .633 - - - - 2.00
Green Red 105 .908 .247 - .640 .115 .0189 .096 2.10
Green Red 336 1.197 .616 - .935 .610 .0592 .551 1.39
Green Red 458 .920 .456 - .664 .318 .0805 .238 1.90
Green Red 611 .972 .541 - .746 .592 .1080 .484 1.50
Green Red 763 .892 .503 - .615 .210 .1350 .075 2.00
Green Red 916 .916 .536 - .655 .370 .1630 .208 1.90



Table V-3. Data for the July 12, 1972 Flight.

Black Calcu-
Filter Target Altitude Density Target 70 Y7 lated Measured bX

Density bX bX 6D

Red Red 0 1.546 - 1.10 - - - - 0.0

Red Red 61 1.546 .238 - 1.10 .0595 .021 .0385 0.0

Red Red 183 1.572 .290 - 1.10 .0166 .066 -.0494 0.0
Red Red 274 1.559 .341 - 1.10 .054 .100 -.046 0.0
Red Red 412 1.509 .421 - 1.10 .185 .147 .038 0.0

Red Red 427 1.514 .436 - 1.10 .177 .152 .025 0.0

Red Red 641 1.489 .482 - 1.10 .249 .185 .064 0.0

Red Red 732 1.516 .483 - 1.10 .185 .192 -.007 0.0
Red Green 0 .611 - .49 - - - - 1.58

Red Green 61 .607 .238 - .485 .180 .021 .159 1.58
Red Green 183 .638 .290 - .540 .408 .066 '.342 1.58
Red Green 274 .681 .341 - .610 .625 .100 .525 1.58
Red Green 412 .709 .421 - .650 .807 .147 .660 1.50
Red Green 427 .728 .436 - .705 .980 .152 .828 1.30
Red Green 732 .746 .483 - .74 1.13 .192 .938 1.20
Red Blue 0 .499 - .365 - - - - .70

Red Blue 61 .514 .238 - .375 .195 .021 .174 .73

Red Blue 183 .539 .290 - .396 .282 .066 .216 .90

Red Blue 274 .602 .341 - .477 .576 .100 .476 1.58

Red Blue 412 .630 .421 - .525 .896 .148 .749 1.58

Red Blue 427 .635 .436 - .535 .968 .152 .816 1.58

Red Blue 641 .654 .482 - .567 1.180 .185 .995 1.58

Red Blue 732 .662 .483 - .580 1.190 .192 .998 1.58I0



Table V-4. Data for the November 6, 1972 Flight.

Black Calcu-
lated Measured

Filter Target Altitude Density Target 7 lated bX bbX
Density 0 D bX bX nD

Red Red 0 .937 - .865 - - - - 0.79

Red Red 397 .956 .106 - .880 .107 .0436 .0634 0.80
Red Red 550 .972 .108 - .897 .115 .0604 .0546 1.02
Red Red 641 1.007 .124 - .935 .135 .0704 .0646 1.45
Red Red 702 .962 .115 - .886 .112 .0768 .0352 0.91
Red Red 793 .973 .127 - .900 .127 .0843 .0437 1.02
Red Red 854 .957 .127 - .883 .121 .0881 .0329 0.89
Red Red 1053 .937 .131 - .865 .125 .0985 .0265 0.79
Red Red 1190 .949 .151 - .873 .122 .1040 .0180 0.85
Red Red 1250 .940 .144 - .867 .127 .1070 .020 0.82
Red Red 1390 .961 .162 - .885 .128 .1120 .016 0.92
Red Red 1465 .961 .164 - .885 .129 .1150 .014 0.92
Red Red 1558 .952 .164 - .877 .130 .1180 .012 0.86
Red Red 1770 .962 .166 - .886 .130 .1250 .005 0.93
Red Red 1860 .986 .210 - .914 .163 .1270 .036 1.20
Red Red 2105 .986 .184 - .914 .153 .1330 .020 1.20
Red Red 2470 .966 .193 - .891 .143 .1410 .002 0.94
Red Green 0 .318 - .39 - - - - 1.84

Red Green 397 .252 .106 - .22 -.514 .0436 -.558 3.40
Red Green 550 .273 .108 - .29 .025 .0604 -.040 2.48
Red Green 641 .314 .134 - .38 .286 .0704 .216 1.92
Red Green 702 .275 .119 - .30 .135 .0768 .058 2.40
Red Green 793 .305 .127 - .36 .313 .0843 .229 1.94
Red Green 854 .297 .127 - .35 .319 .0881 .231 1.98
Red Green 1053 .288 .131 - .33 .275 .0985 .177 2.04
Red Green 1190 .316 .151 - .38 .422 .104 .318 1.84



Table V-4. Data for the November 6, 1972 Flight (Cont.).

Black Calcu- Measure
Filter Target Altitude Density Target 7 7 lated abX

Density bX bX

Red Green 1250 .303 .144 - .37 .457 .107 .350 1.94

Red Green 1390 .320 .162 - .39 .489 .112 .377 1.82
Red Green 1465 .328 .164 - .41 .544 .115 .429 1.76
Red Green 1558 .322 .164 - .40 .540 .118 .422 1.82

Red Green 1770 .333 .166 - .42 .564 .125 .439 1.72
Red Green 1860 .363 .210 - .46 .686 .127 .559 1.52

Red Green 2105 .355 .184 - .45 .601 .133 .468 1.56
Red Green 2470 .357 .193 - .46 .670 .141 .529 1.56
Blue Blue 0 .484 - .55 - - - - 0.65

Blue Blue 397 .529 .110 - .570 .093 .0436 .049 .61
Blue Blue 550 .548 .125 - .580 -.024 .0604 .004 .59

Blue Blue 641 .551 .144 - .583 .074 .0704 .004 .58
Blue Blue 702 .578 .154 - .605 .049 .0768 -.029 .52
Blue Blue 793 .587 .170 - .610 .043 .0843 -.041 .48
Blue Blue 854 .578 .168 - .605 .063 .0881 -.025 .52

Blue Blue 1053 .537 .172 - .575 .140 .0985 .041 .60
Blue Blue 1190 .568 .187 - .598 .102 .104 -.002 .54
Blue Blue 1250 .570 .193 - .60 .107 .107 .000 .54
Blue Blue 1390 .554 .198 - .586 .133 .112 .021 .58
Blue Blue 1465 .585 .216 - .607 .091 .115 -.024 .50
Blue Blue 1558 .580 .209 - .605 .099 .118 -.019 .51
Blue Blue 1770 .580 .212 - .605 .102 .125 -.023 .51
Blue Blue 1860 .563 .216 - .592 .137 .127 .010 .56
Blue Blue 2105 .575 .231 - .602 .140 .133 .007 .53
Blue Blue 2470 .601 .253 -. .616 .098 .141 -.043 .43

0
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Figure IV-8. Comparison of Kodak Density Scales.
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Figure IV-9. Flow Diagram for the Processes Involved
in Film Analysis.
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Figure IV-10. Photograph of the Comnputer Print-out Showing
Some of the Symbols Used for Density.
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Figure V-1. Change in Density of Targets with Altitude for Flight

of August 10, 1971.
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Figure V-2. Comparison of the Vertical Profiles of the Aerosol Particle Count
and the Scattering Coefficient.
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Figure V-3. Erofiles of the Scattering Coefficient and the Relative Humidity
for the June 30, 1972 Flight.
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Figure V-4. Profiles of the Scattering Coefficient and the
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Figure V-5. Profiles of the Scattering Coefficient and the

Relative Humidity for the November 6, 1972 Flight.



2.0 O- Green filter

A - Red filter

1.6

) 1.2

0.8 -

0.4-

0.0 I I I I I I I I0.0
1.8 1.6 1.4 1.2 1.0 - 0.8 0.6 0.4 0.2 0.0

Calibrated Density

Figure V-6. The 7-Curves for the June 30, 1972 Flight.
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Figure V-7. The y-Curve for the Red Filter on the July 12, 1972 Flight.
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Figure V-8. The 7-Curves for the November 6, 1972 Flight.
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Figure V-9. Gamma for Each Measured Density for the
June 30, 1972 Flight.
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Figure V-10. Gamma for Each Measured Density for the

July 12, 1972 Flight.
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Figure V-11. Gamma for Each Measured Density for the
November 6, 1972 Flight.
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Figure V-14. Graph of IQ'/DI versus Measured Density for
July 12, 1972 Flight.
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for November 6, 1972 Flight.
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